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ABSTRACT

The theory of structural holes [4] suggests that individuals would
benefit from filling the “holes” (called as structural hole spanners)
between people or groups that are otherwise disconnected. A few
empirical studies have verified that structural hole spanners play a
key role in the information diffusion. However, there is still lack of
a principled methodology to detect structural hole spanners from a
given social network.

In this work, we precisely define the problem of mining top-k
structural hole spanners in large-scale social networks and provide
an objective (quality) function to formalize the problem. Two in-
stantiation models have been developed to implement the objec-
tive function. For the first model, we present an exact algorithm to
solve it and prove its convergence. As for the second model, the
optimization is proved to be NP-hard, and we design an efficient
algorithm with provable approximation guarantees.

We test the proposed models on three different networks: Coau-
thor, Twitter, and Inventor. Our study provides evidence for the
theory of structural holes, e.g., 1% of Twitter users who span struc-
tural holes control 25% of the information diffusion on Twitter. We
compare the proposed models with several alternative methods and
the results show that our models clearly outperform the comparison
methods. Our experiments also demonstrate that the detected struc-
tural hole spanners can help other social network applications, such
as community kernel detection and link prediction. To the best of
our knowledge, this is the first attempt to address the problem of
mining structural hole spanners in large social networks.
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1. INTRODUCTION

In sociology, there are a few well-established ideas on how posi-
tions in social networks benefit those people who occupy them [7].
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One idea is that positions which act as an intermediary or a bridge
between individuals of different groups tend to have access to a
richer supply of information and have more control over their net-
work relations. The notion forms the basis for the theory of struc-
tural holes [4], which suggests that advantages accrue to people
who occupy such bridging positions. For example, if a researcher
spans a structural hole, he/she could apply ideas and techniques
from one group to problems faced by the other, or innovate by syn-
thesizing ideas from different groups.

A series of empirical studies have demonstrated how structural
holes positively relate to a wide range of indicators of social suc-
cess [1, 5, 6, 28]. A few other papers use game theory to model
the formation of structural holes in social networks. Goyal and
Vega-Redondo [12] propose a model in which a node A potentially
benefits from serving as an intermediary between nodes B and C'
even when it resides on an arbitrarily long B-C path. According to
the presented model, the strategic link formation leads to a star net-
work. However, in real world, many networks are not necessarily
of the star topology. [7] explicitly models the notion of structural
holes using a network formation game. It is based on the idea that
A can only benefit from being an intermediary when A is on a
length-two path between B and C. Kleinberg et al. [18] study the
strategic and dynamic aspect to the theory of structural holes. They
extend Burt’s work [5] by modeling how social networks change
over time if everyone is vying for those bridging positions. How-
ever, while much research has focused on studying the correlation
between structural hole spanners and their success within an orga-
nization (as indicated by salary, reviews, promotion, and other mea-
sures), few work systematically investigates the problem in large
online social networks.

We address the problem of identifying structural holes spanners:
given a social network, who are the top-£ users spanning structural
holes in the social network, and what are the underlying patterns of
these structural hole spanners? The problem could be considered as
the reverse process of the study on strategic network formation with
structural holes [7, 12, 18]. The latter problem is to design a game-
theoretic model to study the evolution of network structure, while
our problem is to detect who are likely to span structural holes in
social networks based on the network structure.

The Model. We assume a setting in which a set V' of n dis-
tinct users form [ groups C = {C1, - - - , C;} (called communities).
A utility function Q(v, C) is defined for each node to measure its
degree to span structural holes. Formally, we have the following
definition,

Definition 1. Top-k Structural Hole Spanners. Let G =
(V, E) denote a social network, where V. = {v1,v2,-++ ,vn} is
a set of n users, and £ C V x V is a set of undirected social



Figure 1: Illustration of structural holes. Nodes in the two el-
lipses form two communities. vg and v12 can be considered to span the
structural hole between the two communities.

relationships between users. Further assume that the nodes of the
social network can be grouped into ! (overlapping) communities
C={Cq, - ,Ci},withV = C1U- - -UC;. Then, the top-k struc-
tural hole spanners are defined as a subset of k nodes, denoted as
Vsm in the network, which maximizes the following utility (qual-
ity) function:

max Q(Vsu,C),with |Vsu| =k €))
Vsu

In the formulation, links can be directed or undirected. The util-
ity function Q(Vsm, C) is a general definition, which can be in-
stantiated in different ways. Note that in the definition, we only
consider the network information but not the content information.
Our goal is to give a theoretical analysis for this problem. Combin-
ing the network information and the content information in practi-
cal mining algorithms is left as one of our future works.

We develop two instantiation models based on the above objec-
tive function. The general idea behind is to measure how a node
bridges different communities. In the first model, we consider the
importance of those connected nodes for mining the structural hole
spanners. That is, if a node connects multiple important nodes (au-
thoritative users), then the node is more likely to be a structural
hole spanner. In the second model, we directly measure each node
according to the theory of minimal cut on network. The problem
is cast as finding k nodes such that after removing these nodes, the
decrease of minimal cut for communities C in network G can be
maximized. For both models, we provide theoretical analysis and
develop efficient algorithms to solve with provable approximation
guarantees. As far as we know, it is the first attempt to prove the
NP-hardness of maximizing the decrease of minimal cut in an un-
weighted graph.

The problem poses a set of challenges. Figure 1 shows an ex-
ample of structural holes with two communities. It is easy to see
that ve and vi2 can be viewed as structural hole spanners between
the two communities. However, there are still several challenging
questions: (1) Which node (vs or v12) has a higher degree to span
structural holes? How to quantify the degree of each node to span
structural holes? (2) How to efficiently select top- £ nodes to max-
imize the utility function (Eq. 1)? (3) How the detected structural
hole nodes can help other social networking applications?

Results. In this work, we focus on studying the problem of min-
ing top-k structural hole spanners in large-scale networks from both
theoretical and empirical aspects. We test the proposed models on
three different networks: Coauthor, Twitter, and Inventor. In Coau-
thor, we try to understand who act as bridges between different
research communities; in Twitter, we attempt to detect who act as
intermediaries for information diffusion; in Inventor, we study how

Table 1: Statistics of the three networks. #Articles respectively
indicates the number of publications, tweets, and patents in the three
networks.

Dataset #Users | #Relationships | #Articles
Coauthor BY | 815,946 2,792,833 1,572,277
Twitter (%] 112,044 468,238 2,409,768
Inventor % | 2,445,351 5,841,940 3,880,211

technologies diffuse across different companies via inventors who
span structural holes. Our study presents the following results:

e 1% of Twitter users who span structural holes control 25%
of the information diffusion (retweeting). This provides a
strong evidence for the theory of structural hole [4, 5].

e We compare the proposed models with several alternative
methods for detecting structural hole spanners and the results
show that our models clearly outperform (+20-40% for max-
imizing the information diffusion) the comparison methods.

e We apply the detected structural hole spanners to help com-
munities detection [32] and link prediction [29], two impor-
tant applications in social networks. Results demonstrate that
the structural hole information can significantly improve the
quality (+10% in terms of Fl-score) of communities detec-
tion and improve the performance (+3-4% by F1-score) of
predicting the type of relationships in two different networks.

Organization. Section 2 introduces the data sets used in our study
and our observations over different networks. Section 3 presents
the proposed model and describes the algorithm for solving the
model; Section 4 describes potential applications of mining struc-
tural hole spanners. Section 5 and Section 6 present the results.
Finally, Section 7 discusses related work and Section 8 concludes.

2. DATA AND OBSERVATIONS

Before proceeding, we first engage in some high-level investiga-
tion of structural holes in several different social networks.

Data collections. We consider three different types of networks
for studying the structural hole problem: Coauthor, Twitter and In-
ventor. Table 1 gives basic statistics of the three networks.
Coauthor is a network of authors, collected by ArnetMiner' .
The data set is obtained from [31]. The network consists of 815,946
authors and 2,792,833 coauthorships. For the evaluation purpose,
we create a sub-network, which contains coauthorships extracted
from papers published at 28 major computer science conferences.
These conferences cover six research areas: Artificial Intelligence
(AI), Databases (DB), Data Mining (DM), Distributed Parallel
Computing (DP), Graphics, Vision and HCI (GV), as well as Net-
works, Communications and Performance (NC)Z. Each conference
has a group of program committee (PC) members. We extracted the
PC member information from respective conference websites from
2008 to 2010. Computer scientists who served as PC members at
conferences of different areas are considered as spanning structural

"http://arnetminer.org, an academic search system.

ZAL: TICAI, AAAI ICML, UAI, UMAP, NIPS, and AAMAS;
DB: VLDB, SIGMOD, PODS, ICDE, ICDT, and EDBT; DM:
SIGKDD and ICDM; DP: PPoPP, PACT, IPDPS, ICPP, and Euro-
Par; GV: SIGGRAPH, CVPR, and ICCV; NC: SIGCOMM, PER-
FORMANCE, SIGMETRICS, INFOCOM, and MOBICOM.
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Figure 2: Structural hole spanners are more likely to con-
nect important nodes than opinion leaders. Random is the aver-
age number of publications/tweets/patents authored by neighborhood
nodes of a random user in the respective network. The average number
is taken as a unit of measurement and the y-axis indicates the average
score of different categories of users under this measurement.

holes across those areas. In total, we extracted 1,718 PC members,
among whom 107 PC members span structural holes. Our goal is
to identify those PC members who span structural holes from the
coauthor network.

Twitter is crawled from Twitter.com, a widely used microblog-
ging system. The data set is obtained from [15, 22]. The sub-
network is comprised of 112,044 users, 468,238 following links
among them, and all tweets (2,409,768 tweets) posted by these
users. Here, we examine the role of structural hole spanners in
the information diffusion process on Twitter.

Inventor is a network of inventors, extracted from a large patent
data set from USPTO’. The data set is obtain from [30]. The
inventor network contains 2,445,351 inventors and 5,841,940 co-
inventing relationships. Each company is considered as a commu-
nity. We study how technologies spread across different companies
via inventors who span structural holes.

Observable analysis. We study the different behavior patterns
between structural hold spanners and opinion leaders, and the in-
terplay between structural hold spanners and information diffusion.
Intuitively, we have the following questions:

e How likely would structural hole spanners connect with
“opinion leaders™?

e How likely would structural hole spanners influence the in-
formation diffusion?

Structural hole spanner and Opinion leaders. We study the con-
nectivity between opinion leaders and different categories of users
(Opinion leaders, Structural holes, and Random). In Coauthor, we
take all PC members as opinion leaders and PC members who serve
at conferences of different areas as structural holes. In Inventor, we
perform PageRank [27] and select the top 1% users with the high-
est PageRank scores as opinion leaders, and those top users who
worked in different companies as structural hole spanners. In Twit-
ter, we also perform PageRank on the following network and select
the top 1% users as opinion leaders. We use the (o — §) commu-
nity detection algorithm [14, 24] to find overlapping communities.
Then those top users who exist in different communities are treated
as structural hole spanners.

Figure 2 shows that structural hole spanners are more likely
(+15-50%) to connect important nodes than opinion leaders. In

3http://uspto.gov/, the US patent and trademark office.
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Figure 3: Information diffusion on the Coauthor network. (a)
Average number of cross-domain citations received by structural hole
spanners and opinion leaders, e.g., in the AI-DM case, for opinion lead-
ers in Al, only citations from DM are considered. (b) Average number
of outer-domain (those domains other than AI and DM) citations re-
ceived by structural hole spanners and opinion leaders.

o
e

1 —=

+Opinion leader| +Opinion leader
EO-S +Structural hole :2' “Structural hole
% 0.4 g 0.5
o o
o S
a 02 a

200 400 600 800 1000 200 400 600 800 1000
Top-k Top-k

(a) Inner domain (b) Cross domain

Figure 4: Information diffusion on the Twitter network. z-axis
indicates top %k opinion leaders/structural hole spanners; and y-axis
indicates the probability of opinion leaders (or structural hole span-
ners) appearing on a tweet-forwarding path spread within a domain or
across different domains.

Figure 2, Random stands for the average number of publica-
tions/tweets/patents authored by neighborhood nodes of a random
user in the respective network. The average number is taken as a
unit of measurement and the y-axis indicates the average score of
different categories of users under this measurement. The analysis
provides evidence in support of the first proposed model (Cf. §3).
Structural hole spanner and information diffusion. We per-
form another analysis of information diffusion in the Coauthor and
the Twitter networks. In Coauthor, we consider the citation as a
type of information diffusion. We count the average numbers of
cross-domain citations received by opinion leaders and structural
hole spanners. (Within the same domain, opinion leaders receive
higher citations than others.) We find a striking phenomenon (Fig-
ure 3): contrast to the inner-domain citation, the average number
of cross-domain citations received by the structural hole spanners
almost doubles the number of opinion leaders. It seems that peo-
ple from a research community C1, if they want to follow the work
related to community Cs, are more likely to refer (cite) the work
of a researcher who spans the structural hole between C and Ca,
rather than an opinion leader in community Cs.

For the analysis of information diffusion in Twitter, we estimate
the probability of opinion leaders (or structural hole spanners) ap-
pearing on a tweet-forwarding path. Figure 4 shows some interest-
ing patterns on Twitter: opinion leaders play a key role in spread-
ing information within a community (Figure 4(a)), while structural
hole spanners are more important for spreading information be-
tween communities (Figure 4(b)). Another striking phenomenon
is that the top 1% (k = 1, 000) of structural hole spanners control
almost 80% of the information diffusion between different commu-
nities, and 25% of all the information diffusion on Twitter.

The above observations constitute the intuition behind the fol-
lowing proposed models.



3. MODELS AND ALGORITHMS

We develop two instantiation models for the utility function
(Eq. 1). The first model considers the connectivity between opin-
ion leaders and structural hole spanners (Cf. Figure 2). The user’s
importance (authority) and the degree of spanning structural hole
are defined in terms of one another in a mutual recursion. The in-
tuition of the second model is from Figures 3 and 4. The model
is defined based on the theory of information flow. We provide
theoretical analysis for the two models and prove the NP-hardness
for the second model, and develop efficient algorithms to achieve
provable approximation guarantees.

3.1 Model One: HIS

The intuition of the first model can be also explained using the
two-step information flow theory [16, 20], which suggests that
ideas (innovations) usually flow first to opinion leaders, and then
from the opinions leaders to a wider population. In this sense, if
a user is connected with many “opinion leaders” in different com-
munities, then the user is more likely to span structural holes. For
example, in Figure 1, nodes vs and v7 act as opinion leaders re-
spectively in the two communities, thus they have more power to
spread information than other nodes (such as vs and v11). ve and
v12 can be considered as the bridge to connect the two communi-
ties. By comparing ve with v12, we see vg connects the two opinion
leaders of the two communities, while v12 only connects two ordi-
nary users. According to the information flow theory, ve would
have a higher informational advantage (i.e., higher degree to span
structural holes) than v12. On the other hand, it would be natural
to enhance the power of information spread through the connection
to structural hole spanners. Thus, a node is more likely to act as an
opinion leader, if it connects with structural hole spanners. Based
on this intuition, we develop the first model, referred to as HIS. To
begin with, we first give the following definition:

Definition 2. Given a network G, let C = {C4, - -- , C;} denote
[ communities in the network G} let I (v, C;) € [0, 1] be the impor-
tance of v in community C';. Then for each subset of communities
S such that S C C and |S| > 2, we define H(v, S) € [0,1] as
the structural hole score of v in .S, i.e., the likelihood of v spanning
structural holes across all communities in S.

Here, each node has an importance score in each community and
a structural hole score in every possible S C C (|S| > 2). The
two types of scores are defined in terms of each other in a mutual
recursion as follows:

I1(v,C;) = max {I(v,Cy), ;I (u,C;) + BsH(u,S)} (2)
sCENT,es
H(v,S) = énleré{l(v,Cl)} (3

where «; and B are two tunable parameters. The importance score
of user v is computed as the maximal value of the linear combina-
tion of v’s friend’s importance score and the structural hole score.
The structural hole score is then defined as the minimal value of
user v’s importance scores in different communities in S. Essen-
tially, in Eq. 2, the importance score can be explained as the maxi-
mal information flow a user can receive from one of her/his friends.
Eq. 3 suggests that a structural hole spanner in S should be active
in all the communities in S. The two update rules, Egs. 2 and 3
are the basic approaches by which structural holes and importance
(authority) reinforce each other. For initialization, we can use an
algorithm such as PageRank [27] or HITS [17] to calculate the au-

thority score (v) of each node v. Then we initialize the importance
score I (v, C;) in the following ways:

I(v,C;) =r(v), veCC; @
I(’U,Ci)zo, UQCZ
The two update rules Eqgs. 2 and 3 run in an alternating fash-
ion until desired equilibrium values for the two scores are reached.
Practically, the two scores (v, C;) and H (v, S) could be infinitely
large without any constraints. We give the following theorem for
the condition of the existence of a convergent solution.

Theorem 1. Given a; and fg, the two scores I(v,C;) and
H (v, S) always exists for any graph G = (V, E), if and only if,

Cielgégies{a +pBs} <1 6)

PROOF. For the only if direction, suppose there exists C; € C
and C; € S such that a; + s > 1. We consider two connected
nodes v1 and ve, with r(v1) = r(v2) = 1, v1 € Nc;esC;
and v2 € C;. Thus, we have I(v1,C;) = 1. By Eq. 3, we
get H(v1,S) = minc;es I(v1,Cj) = 1. By Eq. 2, we get
I(v2,1) > a;I(v1,Cs) + BsH(v1,S) = a; + Bs > 1, which
is impossible.

Now we prove the if direction, if for each C; and C; € S, we
have a; + Bs < 1. We can use induction to prove that, after in-
finite number of iterations, it satisfies I(v,C;) < 1. In the first
iteration, we have I© (v, C;) < r(v) < 1. After the k-th iteration,
we have I™") (v, C;) < r(v) < 1. Hence, in the (k 4 1)-th itera-
tion, for each C; € S, we have I**) (v, C;) < a; 1™ (u, C;) +
BsH® (u, 8) < (ai + Bs) I (u, C;) < I™(u,C;) < 1. O

Algorithm 1 gives the implementation to update Eqs. 2 and 3,
which results in a complexity of O(K 2| E|), where K is the num-
ber of iterations. Let us first prove the e-convergence of the algo-
rithm and then discuss its efficiency.

Theorem 2. Algorithm 1 satisfies e-convergence. Denote v =

max o + we have
C;€C, CiES{ ¢ 65},

(k+1) N (R NP
ve\rfl,l%'),;(ec |I (1}, Cl) I (v7C7«)| e (6)

PROOF. Firstly, parameters «; and (g satisfy v =

max {a; + Bs} < 1. In addition, during the itera-
C;€C, C;e8

tions, forany v € V, C; € Cand S C C, the value of ](k>(v, Ci)
and H® (v, S) are non-decreasing wrt the parameter k.
Now, we use induction to prove

max _[I*Y (v, C;) — 1™ (v, i) < A*

veV,C;eC
and
(k+1) (k) < Ak
Jonax HT (v, 8) — H (v, §)| <97
When k 0, for each v € V and C; € C, we have

I (v, Cy) < 1, thus [TV (v, C;) — I (v, C;)| < 1. And for
eachv € Vand S C C, HY(v,8) < 1, thus we also have
|[HD (v, 8) = HO (v, S)| < 1.



Input: G = (V, E), parameters «;, 85, and convergence threshold e
Output: Importance I and structural hole score H

Initialize I (v, C;) according to Eq. 4 ;
repeat
foreach v € V do
foreach C; € C do
P(’U, Cl) =
maxsconc;es{ail (v, Ci) + BsH(v, S)}
end
end
foreach v € V do
foreach C; € C do
| I'(v,C;) = max{I(v,C;), max.,, ez Pu,C;)};
end
foreach S C C do
| H'(v,S)=ming,esI'(v,Ci) 3
end

end
Check the e-convergence condition by

I'(v,C;) — I(v,C;)| <
Ue\‘}}%fec‘ (v,C;) = I(v,C;)| < e

Update I = I’ and H = H' ;
until Convergence;

Algorithm 1: HIS-algorithm.

Suppose after £ iterations, for each v € V and C; € C, we
have [T (v, C;) — ™ (v, C;)| < 4, and for each v € V and
S C C,|H* Y (v, 8)—HM (v,8)| < +*. Hence, in the (k+1)-
th iteration, for each v € V and C; € C, if I**?(v,0;) =
I D (), then [T*+D (v, C;) — I'"FY (v, C;)| = 0, other-
wise, there exists u, s.t. ey, € Eand S C C, such that C; € §
and

1% (0, C5) = a I % (u, C3) + Bs HF D (u, S)
< ai(I™ (u,Ci) +7°) + Bs(H™ (u, 9) + ")
< @il ™ (u,Ci) + BsHY (u, §) + 4"
S I(lc+1)(v7 Cz) + 'Yk+1

Thus, we have |[T*+2) (v, C;) — I**V (v, C;)| < ~**+1. For
eachv € V and S C C, there exists C; € S, such that

H* D (y,8) = 1% (0, )
> I<k+2>(v,Ci) _ ’YkH
> H<k+2>(v7 S) — AR
Hence \H(’“+2)(v75) _ H<’“+1>(v,5)| <AL 0O

Therefore, wheny =  max
Cc,eC, C;eS

a small constant, the algorithm is guaranteed to be convergent after
a finite number of iterations.

{ai+Bs} < 1—4, where 4 is

We now discuss the efficiency of the algorithm. The time com-
plexity of the algorithm is O(2'|E|/log ), which is insufficient
for large networks. We here introduce an improved algorithm. No-
tice that in the (k + 1)-th iteration of Algorithm 1, we only need to
recompute the values of I (v, *), when one of v’s neighbors changes
its value in the k-th iteration. We can record the change status
of each node in the k-th iteration, and broadcast its change to all
neighbors in the next iteration. In this way, we can update Eqs. 2-3
in linear-time on the degree of v and 2'. In each iteration, we se-

lect the node v with the largest updated I (v, ), then broadcast the
value to its neighbors. The selection of the node v with the largest
updated I(v,*) can be done in time O(log|E|) = O(log|V]),
by using a priority queue. In § 5, we will give the efficiency per-
formance of the improved algorithm. After running the algorithm,
we select k nodes with the highest llgl‘a>.}§ {BsH(v,S)} as the top-k

structural hole spanners.

3.2 Model Two: MaxD

The second model is based on the idea that users who span struc-
tural holes play an important role in information diffusion between
different communities (confirmed in the observable analysis in § 2).
Following this, we formalize the problem of structural hole spanner
detection by minimal cut.

Definition 3. Minimal Cut. Given a network G = (V, E) and
communities C = {C1,--- ,C;}, we call D C FE as the minimal
cut (denoted as MC(G, C)) of communities C in G, if D is the
minimal number of edges to separate those nodes in each commu-
nity C; from the others {C;|j # i}.

Given this, the structural hole spanner detection problem can be
cast as finding top-k nodes such that after removing these nodes,
the minimal cut of C in G will be significantly reduced, i.e., the
decrease of the minimal cut after removing will be maximized. The
idea is natural, as structural hole spanners play bridging roles be-
tween communities. Without these structural hole nodes, the con-
nections between different communities would be minimized. To
make the idea precise, we propose the following problem defini-
tion:

Definition 4. Detecting top-k structural hole spanners by

minimal cut. Given a graph G = (V, E), and | communities
C = {Ci,---,Ci}, the task of detecting top-k structural hole
spanners by minimal cut is to find |Vsyz| = k nodes such that

after removing these k nodes, the decrease of minimal cut of C in
(& should be maximized, i.e.,

Q(Vsu,C) = MC(G, C) = MC(G\VsH, C), |Vsul=Fk (7)

The following theorem shows the hardness of this definition.

Theorem 3. The problem of detecting top-k structural hole
spanners by minimal cut is NP-hard, even in the case of [ = 2.

PROOF. In the case of I = 2, the problem can be reduced from
the k-DENSEST SUBGRAPH problem, which tries to find a k-
node subgraph with the maximum number of edges from a given
graph. For the decision version of the problem, it asks whether
there exists a k-node subgraph containing at least d edges.

Given an instance ¢ = {G™ = (V, E), k, d} of the k-DENSEST
SUBGRAPH problem, we denote n = |V| and m = |E|. We
build a graph G consisting of (n 4 (n? + 1)m 4+ 2) nodes, de-
noted as {s,¢,21, -+ ,Tn,Yir1, -, Yim} 1 < & < n? +1,
where C = {C1,C2}, C1 = {s} and C> = {¢}. In the follow-
ing, we use graphs with polynomially bounded weight (weighted
graph for short), and it is straightforward to construct an equiv-
alent un-weighted graph of polynomial size. Graph G contains
(n+ 3(n? + 1)m) edges. For each 1 < j < n, we add one edge
between s and x; with capacity (n® + 1)m. Foreach 1 < j < n,
1<i<n?+1andl < k < m, if node x; appears on the
k-th edge (each edge could be regarded as a set of two nodes),
we add one edge between z; and y; , with capacity 1. For each



1<i<n?+1and1l <k < m, we add one edge between y; i
and ¢ with capacity 1.

According to the max-flow and min-cut theory, it is easy to see
that, MC(G, C) = (n® + 1)m. Now we want to prove that, the
k-DENSEST SUBGRAPH instance ¢ is satisfiable, if and only if,
there exists a subset |Vgu| = k, such that MC(G \ Vsg,C) <
(n* 4+ 1)(m — d).

For the only if direction, suppose the k-DENSEST SUBGRAPH
instance ¢ is satisfiable, then we have the subgraph consists of
nodes {xsj} and at least d edges. Thus, we can choose Vsy =
{xs;}. For the k-th edge ey, in graph G, if ey exists in the sub-
graph, forall 1 <1 < n?+1, node y;,k cannot be reached. Hence,
we have MC(G \ Vsu, C) < (n* +1)(m — d).

For the if direction, if there exists a subset |Vsg| = k such
that MC(G \ Vs, C) < (n? + 1)(m — d). Denote Viy =
Veu ({z;}, we have |Viy| < k, and MC(G \ Viy,C) <
(n? + 1)(m — d). Thus, let the subgraph be the set of correspond-
ing nodes in V&, there are at least d edges in the graph whose
both endpoints are contained in the subgraph. Therefore, the k-
DENSEST SUBGRAPH instance ¢ is satisfiable.

Based on the above, we establish the theorem. [

The k-DENSEST SUBGRAPH is hard to approximate, the best
known approximation algorithm is O(n'/47<) [3]. The results in
literature [2] indicated the hardness of approximating k-DENSEST
SUBGRAPH within n(*) factors.

Theorem 4. Suppose the k-DENSEST SUBGRAPH is hard to
approximate within n?® | then the problem of detecting top-k
structural hole spanners by minimal cut is hard to approximate
within 72 as well.

PROOF. Suppose there is an approximation algorithm A for the
problem of detecting top-k structural holes by minimal cut with an
approximation ratio of O(f(|G])). Given an instance ¢ = {G* =
(V,E), k,d} of the k- DENSEST SUBGRAPH problem, again we
denote n = |V| and m = |E/|. We continue using the construction
in the proof of Theorem 3. Suppose the optimal solution {x;} of

. . /
¢ contains d* edges, then there exists a subset Vg = {v;j} such

that |Vsy| = k and MC(G\Vey, C) < (n + 1)(m — d*). We
call algorithm A to compute a subset |Vsz| = k such that

MC(G\Vsu, C) < m(n® + 1) — d*(n* + 1)/O(f(n“?))
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where Co is a constant. Then denote Vig = Vsu ({z,},
we have |Viy| < k, and MC(G\VZy,C) < (n? + 1)[m —
d*JO(f(n“?))]. Thus, let the subgraph be the set of correspond-
ing nodes in {z;}\ V&, which contains at least [d/O(f(n°))]
edges. Therefore, the problem of detecting top-k structural holes
by minimal cut is also hard to approximate within M. 0O

Approximate algorithms. Now, we present a polynomial-time
algorithm to approximate the problem of structural hole spanners
detection by minimal cut.

For any pair of communities, we select k/ (é) nodes between
them as structural hole spanners using a greedy strategy (referred
as MaxD-ALIl). In each round, we choose the node which will
result in a maximal decrease of the minimal cut when removed it
from the network.

Theorem 5. The greedy algorithm can achieve an approximation
ratio of n@M).

Input: G = (V,E), k,I,C={C;})
Output: Top-k structural hole nodes Vg gy

Initialize Vg = 0 ;
while Vg | < k do
Initialize f(v) = 0, foreachv € V
foreach non empty S C {1,--- ,1} do
Egs = UijesC;and Er = U;gsCi s
Compute the maximal flow with source E's and sink E7 on
the induced graph G \ Vs ;
foreach v € V do
| Add f(v) by the flow though node v ;
end
end
Choose O(k) nodes with the largest f as candidates D;
Compute p* = arg min, e , MC(G \ (Vs U{p}), C);
Update Vs = Vs U{p*}

end

Algorithm 2: MaxD-AL2 Algorithm.

PROOF. Based on the fact that the minimal cut of the graph is
bounded by n°W | the theorem is proved. [

Suppose the time to compute the minimal cut of all communities
C = {Ci,---,Ci} in Gis O(T;(n)). Thus, the time-complexity
of the greedy algorithm is O(nkT;(n)). To scale up the algorithm
to large networks, we consider two strategies to improve the ef-
ficiency of the algorithm. One idea is to restrict the number of
candidates in the greedy algorithm. The first algorithm (MaxD-
AL1) only considers O(k) high-degree nodes as candidates, which
improves the time-complexity to O(k*T;(n)). In the second algo-
rithm (called MaxD-AL?2), for each partition F's and Er, we call
the network-flow algorithm [8, 11] to compute the minimal cut of
Es and Er. We consider top O(k) nodes with maximal sum of
flows through them as candidates. Details can be found in Algo-
rithm 2.

In Algorithm 2, one challenge is to estimate MC(G, C). As
introduced in [10], by a reduction from the 3-DIMENSIONAL
MATCHING problem, it is NP-hard to compute the minimal cut
between multiple-sets(when [ > 2). We develop the following al-
gorithm to estimate the minimal cut of communities C = {C}} in
G. The approximation ratio of the algorithm is O(log!). The idea
of the approximation algorithm is as follows. To find the minimal
cut of all communities C = {C;}, we try all possible partitions of
C = C; U C; and find the minimal cut (denoted as D) between
Uc,ec, CiandUg, cc, Ci- Then we remove D from the graph G
and call sub-tasks on C; and Cg recursively. The time-complexity
of the algorithm for computing MC(G, C) is O(2% T (n)).

Theorem 6. The above algorithm for computing MC(G, C)
provides an O(log 1) approximation.

PROOF. The approximation ratio is bounded by the depth of the
partition process. There is always a partition whose depth is at most
O(log!). Thus, the approximation ratio is O(log{). [

4. MODEL APPLICATIONS

Now, we turn to discuss how structural holes can help real social
applications. Specifically, we consider detecting community ker-
nels [32] and inferring social ties [29]. The former aims to detect
the community structure among influential (kernel) users and the
latter is to predict the types of social relationships (can be gener-
ally considered as a link prediction task).

4.1 Community Kernel Detection



The community kernel detection problem is defined as: [32]
Given a graph G = (V,E), a weight vector w(v) =
{w1(v), -+ ,wi(v)} is defined for each node v, with each w;(v)
representing the relative importance of the node wrt the i-th com-
munity. Denote s as the size of community kernels. One goal
of community kernel detection is to obtain the importance of each
node wrt a community. Then those nodes with the highest impor-
tance scores are selected as the kernel members. The algorithm
proposed in [32] is called WEBA.

Now, we study how to leverage structural hole to help commu-
nity kernel detection. Our idea is based on the intuition that struc-
tural hole spanners may be connected with kernel members in dif-
ferent communities. Following this, we incorporate the output of
structural hole analysis into the objective function of WEBA. For
HIS, we define

= H(v, S 9
p(v) =  max {BsH(v,S)} ©)

For MaxD, we first calculate the top-k structural hole spanners
Vs. Then we define p(v) = 1if v € Vsg, and p(v) = 0 other-
wise. Given this, we extend the objective function of WEBA, and
define the following optimization problem:

max L(W) = Z W(u) - W(v) + s Z Z p(v)w;(v)

(u,v)EE veV 1<:i<I
subject to Z wi(v) =s, Vi€ {1, - ,{};
veV
Z wi(v) <1, Yo € V;
1<i<t
wi(v) 20, VYweV, Vie{l, -, L} (10)

We use a similar algorithm as that in [32] to solve the optimiza-
tion problem in Eq. 10. We still use coauthor data set in [32] to
evaluate the performance of community kernel detection in terms
of precision, recall, and F1-score.

4.2 Link Prediction

We also apply the results of structural hole analysis to help pre-
dict the types of social relationships, an important link prediction
task. Specifically, we consider the following data sets used in [29].

Slashdot is a network of friends. Slashdot is a site for sharing
technology related news. In Slashdot, users can tag each other as
“friends” (like) or “foes” (dislike). The data set is comprised of
77,357 users and 516,575 edges.Our goal is to predict the “friend”
relationships between users.

Mobile is a network of mobile users. The data set is from [9].
It consists of the logs of calls, blue-tooth scanning data and cell
tower IDs of 107 users during about ten months. If two users com-
municated (by making a call and sending a text message) with each
other or co-occurred in the same place, we create an edge between
them. In total, the data contains 5,436 edges. Our goal is to predict
whether two users have a friend relationship. For evaluation, all
users are required to complete an online survey, in which 157 pairs
of users are labeled as friends.

For predicting the types of social relationships on the above data
sets, [29] presents a number of algorithms, among which the graph-
ical model PFG (Partially Labeled Factor Graph) achieves the best
performance in one single network. We first perform the proposed
models to mine structural hole spanners on the two data sets. As
for the communities, we use the Newman’s algorithm [26]. Then
we use the identified structural hole spanners to define correlation

features in the PFG algorithm. Specifically, given a structural hole
spanner, for any two users who have relationships with the spanner,
we create a binary correlation feature. For example, if both users
v; and v; have a friend relationship with a spanner vy, then a cor-
relation feature h(y;x = 1,y;x = 1) is defined. For more details
about the feature definition, please refer to [29].

S. EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency of
our algorithms proposed in Section 3. All data sets and codes used
in this work are publicly available.*

5.1 Experimental Setup

To quantitatively evaluate the proposed models, we consider the
following performance metrics:

e Accuracy. In the Coauthor network, we evaluate the pro-
posed models in terms of Precision, Recall, and F1-Measure.
In both Twitter and Coauthor networks, we use the maxi-
mization of information diffusion to evaluate the proposed
models.

e Case study. We use several case studies as the anecdotal
evidence to further demonstrate the effectiveness of the pro-
posed models.

e Application improvement. We apply the detected structural
hole nodes to help community kernel detection and link pre-
diction. This will demonstrate how the quantitative measure-
ment of structural holes can benefit other social networking
applications.

Comparison Methods We compare the following methods for de-
tecting top-k structural hole spanners.

Pathcount [12]: for each node, the algorithm counts the average
number of shortest paths (between each pair of nodes) it lies on,
and then selects those nodes with the highest numbers as structural
hole spanners.

2-Step Connectivity [29]: for each node, it counts the number
of pairs of neighbors who are not directly connected. And then
those nodes with the highest numbers are viewed as structural hole
spanners.

PageRank: it uses PageRank [27] to estimate the importance of
each node and then selects those nodes with the highest PageRank
scores as structural hole spanners.

PageRank+: it selects those nodes who have the highest Pager-
ank scores and appear in more than one communities as structural
hole spanners.

HIS: the first proposed model. We empirically set c;; = 0.3 and
Bs = 0.5 — 0.5

MaxD: the second proposed model. By default, we use the
MaxD-AL?2 algorithm to approximate the model.

In Coauthor, we consider each subject area as a community; in
Twitter, we use the (a— 3) algorithm [24] to find overlapping com-
munities; and in Inventor, we take each company as a community.

All codes are implemented in C++, and all experiments are per-
formed on a PC running Windows 7 with Intel (R) Core (TM) 2
CPU 6600 (2.4GHz) and 4GB memory. Table 2 lists the running
time of the comparison algorithms. In general, HIS has a very good
efficiency performance and can perform the detection on large net-
work (Inventor) with millions of nodes in 26 seconds. MaxD results
in a bit lower efficiency, but is comparable with Pathcount.

“http://arnetminer.org/structural-hole/
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Figure 5: Accuracy performance of different algorithms for detecting top-£ structural hole nodes on Coauthor.
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Figure 6: Results of maximization of information diffusion by different algorithms. (a) probability of the detected structural hole nodes
appearing on a tweet-forwarding path across different communities; (b) probability of the detected structural hole nodes receiving cross-domain

citations.

Table 2: Running time of different algorithms.

Data Set | Pathcount | 2-Step | PageRank HIS MaxD

Coauthor 350.66s 4.71s 0.20s 0.60s 189.78m
Twitter 32.03m 12.09s 0.67s 3.87s | 602.37m
Inventor 4943 hr | 98.96s 3.61s 26.11s | 370.8hr

5.2 Performance Analysis

Accuracy. We first use Coauthor as the benchmark data set to
evaluate the proposed models. Figure 5 shows the performance
of different algorithms. Both of the proposed models clearly out-
perform the comparison algorithms by +20-40% at top 20. As
expected, choosing important nodes (by PageRank) only is not a
good strategy. 2-Step Connectivity and Pathcount achieve a better
performance than PageRank. This is because that the objective of
PageRank, to find authority nodes, is different from that of finding
structural hole spanners. In our first model, HIS, structural hole
nodes are determined not only by the bridging positions, but also
by the status (e.g., opinion leaders or not) of people connected by
the bridging positions. We also note that the two proposed models
present different behaviors. Roughly, MaxD performs a bit better
at top 20, while HIS outperforms when the number increases to
40-100.

Maximization of information diffusion. Employing Twitter and
Coauthor as the basis, we study how the detected structural hole
spanners govern the diffusion of information. Specifically, we ap-
ply the different algorithms to the Twitter (or the Coauthor) net-
work to detect top-k structural hole spanners. Then we use the
tweet-forwarding (or the citation) information to verify the detected
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Figure 8: Performance of information spread by HIS with the
two parameters « and S varied (k = 200).

results. Figure 6 shows the performance of different algorithms on
the two networks. We can see in Twitter the proposed models sig-
nificantly outperform the comparison algorithms. In Coauthor, the
improvements of our models over the comparison algorithms is still
clear. We produce sign tests for each result, which confirms that all
the improvements of our proposed models over the four methods
are statistically significant (p < 0.01). We can also see that top
100 (0.2%) structural hole users (detected by MaxD) in Twitter in-
fluence almost 10% of the forwarding behaviors between different
communities. Notice the striking patterns between the two models
on the Twitter network. Although MaxD directly models the infor-
mation diffusion process, HIS clearly outperforms MaxD when the
number of k increases up to 200, and by over 20% when k = 500.
This suggests that there is big a difference between the information
network structure and the social network structure. How to com-
bine the two network structures for mining structural hole spanners
would be an interesting future work.

Model analysis. We now analyze several properties of the two
models. For HIS, we compare the two algorithms described in §3.1
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Figure 7: Model analysis for MaxD on the three networks.

on the three data-sets. The two algorithms produce the same result,
but the improved algorithm achieves an 25x speedup, comparing
with the basic algorithm (as shown in Table 2). We further examine
how the tunable parameters « and [ influence the performance of
information spread on the Coauthor and Twitter networks. Figure
8 shows the performance of information diffusion of HIS with the
two parameters varied (by fixing k& = 200). The performance is
insensitive to the different parameter settings.

For the MaxD model, we compare different algorithms by the
minimal cut described in § 3.2. Figure 7 shows the performance
of the different algorithms in Model 2. The MaxD-AL2 algorithm
outperforms the other algorithms in terms of Q(Vsg, C). This is
consistent with the theoretical analysis in §3.2. MaxD-AL]I is close
to MaxD-AL2 for a small k£ (k < 10), but the difference quickly
becomes wider when increasing the value of k.

5.3 Case study

Now we present a case study on the Inventor network to quali-
tatively demonstrate the effectiveness of the proposed models. Ta-
ble 3 lists top-5 structural hole spanners detected by our proposed
algorithms from the Inventor network. We find that most of the
detected structural hole spanners have been working in more than
one job. The exception is T. Kondo and S. Yamazaki. The former
is the senior vice president of Sony and holds patents on semicon-
ductor, image processing, and mobile devices. On each topic, he
collaborated with people from different companies/universities. S.
Yamazaki is the president of SEL (Semiconductor Energy Labora-
tory). He is a Japanese inventor in the field of computer science and
solid-state physics. He holds over 2,680 U.S. utility patents. Part
of his patents are in relation to SEL and many others are named
individually. Another phenomenon worth mentioning is that HIS
seems to select people with the highest PageRank scores, while
MaxD tends to select people who have been working on more jobs.
This result is consistent with the intuitions behind the two models.

6. APPLICATION IMPROVEMENT

We now turn to evaluate the performance improvement when ap-
plying the output of mining structural hole spanners to the two so-
cial applications: community kernel detection and link prediction.

Community kernel detection. For fair comparison, we still use
the benchmark coauthor network used in [32] to evaluate the per-
formance of community kernel detection in terms of precision, re-
call, and F1-score. The benchmark network is comprised of authors
who have published papers on top conferences in five research ar-
eas:® Artificial Intelligence (AI), Databases (DB), Distributed and

>The benchmark network is similar to the Coauthor data set intro-
duced in §2.

Table 3: Top-5 structural hole nodes discovered by our algo-
rithms on the Inventor network. Names with * are inventors with
the highest (top-5) PageRank scores.

Inventor HIS MaxD Title
Professor (MIT Media Lab)
E. Boyden v/ | Associate Professor (MIT McGovern Inst.)

Group Leader (Synthetic Neurobiology)
Founder and Manager (Protia, LLC)

A. Czarnik 4 Visiting Professor (University of Nevada)
Co-Founder (Chief Scientific Officer)
Senior vice president (Sony Corporation)
Director of Operations (WBI)
Director of Department Responsible (IDA)
Senior vice President (Walt Disney)
Secretary of Trustees (The New York Eye)
Consultant (various wireless companies)
Co-founder (Innovent System Corp.)
Leader (RE-CMOS).

Engineering Director (Broadcom Corp.)
v Co-founder(Iran Today Publications)
President and majority shareholder (SEL)

T. Kondo* v
A. Nishio Vv

<

E. Nowak*

A. Rofougaran

M. Rofougaran

AU NG

S. Yamazaki*

Parallel Computing (DP), Graphics, Vision and HCI (GV), and
Networks, Communications and Performance (NC). For example,
for DB, the conferences include VLDB, SIGMOD, PODS, ICDE,
ICDT, and EDBT. The community of program committee (PC)
members of those conferences in each area is viewed as the ground
truth for quantitatively evaluating the performance of community
kernel detection. We empirically set the value of & as 100.

By solving Eq. 10 with the similar algorithms as that in [32],
we compare the community detection performance of WEBA with
and without the help of structural hole. The performance is shown
in Figure 9. Clear improvements on the coauthor data set can be
obtained. In terms of Fl-score, the average improvement is about
4.5%. HIS performs a bit better than MaxD.

Link prediction. We also apply the discovered structural holes
spanners to help link prediction in the two networks: Slashdot and
Mobile. Specifically, we first use the Newman’s algorithm [26] to
discover communities in each network and then use the proposed
models to mine top-k structural holes spanners. Then we define
correlation features based on the discovered structural hole span-
ners and add those defined features into the prediction algorithm
PFG [29]. We use half of the data for training the PFG algorithm
and the rest for testing its prediction performance. Table 4 lists the
prediction performance of PFG before and after adding the struc-
tural holes-based features. It can be seen that by incorporating the
structural holes-based features, the performance of predicting the
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Figure 9: Performance of WEBA for detecting kernel commu-
nities with and without the help of structural holes mining.

Table 4: Performance of the PFG algorithm for predicting

the type of social relationships before and after combining the

structural hole-based features.
Dataset Algorithm K

PFG - 09111 0.5694 | 0.7008
PFG(HIS) 5 0.8958 0.5972 | 0.7166
PFG(HIS) 15 0.8491 0.6250 | 0.7200
Mobile PFG(HIS) 25 0.8519 0.6389 | 0.7302
PFG(MaxD) 5 0.9130 0.5833 0.7118
PFG(MaxD) | 15 0.8776 0.5972 | 0.7107
PFG(MaxD) | 25 0.8723 0.5972 | 0.7090

PFG - 0.6619 0.7281 0.6934
PFG(HIS) 100 0.6562 0.7965 0.7196
PFG(HIS) 150 0.6615 0.8241 0.7339
PFG(HIS) 200 0.6788 0.7886 | 0.7296

PFG(MaxD) | 100 0.6602 0.7542 | 0.7041
PFG(MaxD) | 150 0.6667 0.7532 | 0.7073
PFG(MaxD) | 200 0.6619 0.7775 0.7151

Precision | Recall | Fl-score

Slashdot

type of social relationships by PFG is clearly improved (+1.4-5.8%
by Fl-score; t-test, p < 0.01). We also evaluate how the perfor-
mance is affected by the number of k. On the Mobile data, as the
network is relatively small, we set k as 5, 15, 25. On the Slashdot
data, we set k as 100, 150, 200. The results show that the perfor-
mance is indeed influenced by different settings of the value for k&,
but with all the different settings, the performance of link predic-
tion by PFG can be improved. This confirms the effectiveness of
the proposed structural hole mining models.

7. RELATED WORK

Structural holes. The concept of structural hole is first intro-
duced in [4] and further elaborated in literature [1, 5, 6]. There
have been a few works on mining structural holes from social net-
works. Goyal and Vega-Redondo [12] propose a model of network
formation to study how structural holes are formed in social net-
work. They consider a model in which a node u potentially benefits
from serving as an intermediary between nodes v and w even when
it resides on an arbitrarily long v-w path. Based on the model, they
obtain a star network. However, in real world, many networks are
not necessarily of the star topology. Buskens and van de Rijt [7]
uses the game theory to model the network formation with struc-
tural holes. Kleinberg et al. [18] study the strategic and dynamic
aspect to the theory of structural hole. They extend Burt’s work

[5] by modeling how social networks change over time if every-
one is vying for those bridging positions. In this work, we study
a novel problem of mining structural hole spanners in social net-
works, which can be considered as the reverse process of the study
of strategic network formation with structural holes [7, 12, 18].

Information diffusion. Our work is also related to a growing body
of research on information diffusion. For example, Gruhl et al. [13]
study the dynamics of information propagation in environments of
low-overhead personal publishing on a web blog data. They ap-
ply the theory of infectious diseases to model the “topic” flow on
web blogs. Kumar et al. [19] explore the formation of the struc-
ture of conversations in social networks and propose a mathemat-
ical model to generate the basic structure underlying conversation
behaviors. Liben-Nowell and Kleinberg [21] investigate the infor-
mation spreading processes at a person-to-person level using meth-
ods to reconstruct the propagation of massively circulated Internet
chain letters. They find the progress of the chain letters proceeds in
a narrow but very deep tree-like pattern and propose a probabilis-
tic model based on network clustering and asynchronous response
times to produce the tree. Yang et al. [33] analyze how information
spread on Twitter via the retweeting behavior and propose a semi-
supervised framework to predict users’ retweet behaviors. Myers
et al. [25] study how the process of information diffusion is influ-
enced by external sources. Matsubara et al. [23] propose a model
called SPIKEM to model the rise and fall patterns of influence
propagation. However, all these works do not consider how struc-
tural holes influence the procedure of information diffusion. To the
best of our knowledge, this is the first work to systematically study
the problem of mining structural hole spanners in social networks.

8. CONCLUSION

In this paper, we study the novel problem of mining structural
hole spanners in large networks. We precisely define the problem
of top-k structural hole detection and provide an objective (quality)
function to formalize the problem. We develop two instantiation
models for the objective function based on the principles of infor-
mation flow. For both models, we provide theoretical analysis and
proofs for their hardness, and develop efficient algorithms to solve
with provable approximation guarantees. We validate the effective-
ness and efficiency of the proposed models on three different types
of networks. We also apply the detected structural hole spanners by
the proposed models to help several social networking applications,
which further demonstrate its effectiveness.

Structural hole is an important concept in social theory and it
relates to a wide range of indicators of social success. As for the
future work, it would be intriguing to combine the content informa-
tion with the user network information and design a unified model
for mining structural hole spanners. It is also interesting to further
improve the proposed algorithms. For example the MaxD-AL?2 al-
gorithm still suffers from the high computational cost (as shown in
Table 2) and this HIS model is still lack of a theoretical guarantee.
In addition, though the MaxD model uses the information diffu-
sion in the evaluation, but not really uses the process to identify the
structural hole spanners. How to elegantly incorporate the informa-
tion diffusion process into the MaxD model would be a very inter-
esting research topic. Another potential issue is to systematically
study how structural holes can help the other social networking ap-
plications (e.g., recommendation).
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