Position: Home > Faculty > Teacher > Content

Haining FAN

Haining FAN

Email:fhn@tsinghua.edu.cn

Education background

Bachelor ofComputer Science, Institute of Communications Engineering, Nanjing, China, 1992;

Master ofMilitary Science, Institute of Communications Engineering, Nanjing, China, 1996;

Ph.D. in Computer Science, Tsinghua University, Beijing, China, 2006.

Social service

PC member of the International Workshop on the Arithmetic of Finite Fields, 2010, 2012.

Areas of Research Interests/ Research Projects

Cryptographic computing,Information Security

Research Status

I have been dedicating myself to designing efficient finite field GF(2^n) multipliers since the early 1990s. In collaboration with my coauthors, we have designed the unique best quadratic and subquadratic bit-parallel multipliers over most binary extension fields, for example, the two fields GF(2^193) and GF(2^257) in the Chinese national standard – the elliptic curve cryptography SM2, and the last four of the five fields GF(2^163), GF(2^233), GF(2^283), GF(2^409) and GF(2^571) recommended in the Elliptic Curve Digital Signature Algorithm (ECDSA) international standard.

In 2016, the SPB multipliers we designed in 2005 were used in fast BCH ECC decoders of future memories including, e.g., the 3D XPoint memory of Intel-Micron, (”Fast Decoding ECC for Future Memories”,IEEE J-SAC).

Honors And Awards

2012 IET Information Security Premium Awards.

Academic Achievement

Survey and Book Chapter

[1] M. Hasan and Haining Fan: 《Handbook of Finite Fields》, Ch. 16.7, “Binary extension field arithmetic for hardware implementations”,CRC press, 2013 (Compiled by 88 international contributors.)

[2] Haining Fan and M. Hasan, “A survey of some recent bit-parallel GF(2^n) multipliers,” Finite Fields and Their Applications, vol. 32, pp. 5-43, March 2015 (Invited by the “Twenty Year Anniversary Edition”.)

Research Papers

[1] Haining Fan, Simple multiplication algorithm for a class of GF(2^n); IEE Electronics Letters, vol. 32, no.7, pp.636-637, 1996.

[2] Haining Fan and Yiqi Dai, Key function of normal basis multipliers in GF(2^n); IEE Electronics Letters, vol. 38, no.23, pp. 1431-1432, Nov. 2002.

[3] Haining Fan and Yiqi Dai, Low complexity bit-parallel normal bases multipliers for GF(2^n); IEE Electronics Letters, vol. 40, no.1, pp. 24-26, Jan. 2004.

[4] Haining Fan and Yiqi Dai, Normal basis multiplication algorithm for GF(2^n); IEE Electronics Letters, vol. 40, no.18, pp. 1112-1113, Aug. 2004.

[5] Haining Fan and Yiqi Dai, Fast bit-parallel GF(2^n) multiplier for all trinomials; IEEE Transactions on Computers, vol. 54, no. 4, pp. 485-490, Apr. 2005.

[6] Haining Fan, Duo Liu and Yiqi Dai, Two Software Normal Basis Multiplication Algorithms for GF(2^n); Tsinghua Science and Technology, vol. 11, no.3, pp. 264-270, 2006.

[7] Haining Fan and M. Hasan, Relationship between GF(2^m) Montgomery and Shifted Polynomial Basis Multiplication Algorithms; IEEE Transactions on Computers, vol. 55, no. 9, pp. 1202-1206, Sept. 2006.

[8] Haining Fan and M. Hasan, Fast Bit Parallel Shifted Polynomial Basis Multipliers in GF(2^n); IEEE Transactions on Circuits & Systems I: regular papers, vol.53, no.12, pp.2606-2615, 2006.

[9] Haining Fan and M. Hasan, A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields; IEEE Transactions on Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.

[10] Haining Fan and M. Hasan, Comments on ‘Five, Six, and Seven-Term Karatsuba-Like Formulae’; IEEE Transactions on Computers, vol. 56, no. 5, pp. 716-717, May 2007.

[11] Haining Fan and M. Hasan, Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases; IEEE Transactions on Computers, vol. 56, no. 10, pp. 1435-1437, Oct. 2007.

[12] Haining Fan and M. Hasan, Alternative to the Karatsuba algorithm for software implementations of GF(2^n) multiplications; IET Information security, vol. 3, no. 2, pp. 60-65, 2009.

[13] Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam,Overlap-free Karatsuba-Ofman polynomial multiplication algorithms; IET Information security, vol. 4, no. 1, pp. 8-14, 2010. (Patent:ZL 2010 1 0279491.X Subquadratic polynomial multipliers based on the divide-and-conquer approach.)

[14] Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam, Obtaining More Karatsuba-Like Formulae over the Binary Field; IET Information security, vol. 6, no. 1, pp. 14-19, 2012.

[15] Cheng Su and Haining Fan, Impact of Intel's new instruction sets on software implementation of GF(2)[x] multiplication; Information Processing Letters, vol. 112, pp. 497-502, 2012.

[16] Xi Xiong and Haining Fan, GF(2^n) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials, IET Electronics Letters,Vol. 50,No. 9,pp. 655–656,2014.

[17] Jiangtao Han and Haining Fan, GF(2^n) Shifted Polynomial Basis Multipliers Based on Subquadratic Toeplitz Matrix-Vector Product Approach for All Irreducible Pentanomials, IEEE Transactions on Computers, vol. 64, pp. 862-867, March, 2015.

[18] Yongjia Wang, Xi Xiong and Haining Fan, GF(2^n) redundant representation using matrix embedding for irreducible trinomials, International Journal of Foundations of Computer Science, vol. 27, pp. 463-478,2016.

[19] Haining Fan, A Chinese Remainder Theorem Approach to Bit-Parallel GF(2^n) Polynomial Basis Multipliers for Irreducible Trinomials, IEEE Transactions on Computers, vol. 65, no.2, pp. 343-352,2016.